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I. INTRODUCTION

This note is intended to provide additional de-
tails to DØ physicists planning to measure the
top quark mass in the lepton+jets channel in
Run 2, who wish to understand how the data for
Run 1 top mass analysis were selected, especially
how the “top likelihood” for each event was es-
timated. Their primary references should be the
original Run 1 analysis note [1] and the eventual
long PRD article [2]. In the context of these pri-
mary references, this note is a supplement to [1].

This note has two scopes. First, in Section II
we define certain variables that discriminate top
from background events without significantly bi-
asing the apparent top mass of the sample. Sim-
ilar information is provided in [1]; the definitions
are included here for completeness and precision.
These variables underlay both the likelihood and
neural network (NN) determinations by DØ of
the top mass in this channel.

Distributions in these variables were combined
into a likelihood discriminant DLB for Run 1 top
mass analysis. This was used in one of the two
methods that were employed; the other method
used a discriminant DNN taken from the out-
put of a neural network that was based on the
same variables. Either discriminant ranged from
0 (background-like) to 1 (top signal-like). Orig-
inally, in either branch of the analysis, DØ in-
tended merely to place a cut on the appropriate
D; soon it was realized that the error could be
reduced by fitting the data to two-dimensional
templates in D vs. reconstructed top mass.

The second scope of this note (Section IV) de-
scribes how and why the likelihood discriminant
DLB was defined as it was.

The “top likelihood” work was carried out during
1995-1996, collaboratively by M.S. and S. Pro-

topopescu for the first scope, and by M.S. for
the second. E. Varnes provided DØ data and
Monte Carlo events in a compact format suitable
for many iterations of the work described here.

II. DEFINITION OF KEY VARIABLES

Precut sample

The data for all top quark mass analysis in
the lepton+jets channel arose from a “precut
sample” satisfying certain basic (and two not-
so-basic) cuts. Jets, corrected for energy scale
and for the energy of any associated tag muon,
were required to have ET > 15 GeV and |η| < 2.
Isolated electrons satisfied the same η cut, but
isolated muons were restricted to |η| < 1.7 due
to limitations of the forward muon system; both
types of lepton satisfied the stiffer cut ET > 20
GeV. Likewise, missing ET was required to ex-
ceed 20 GeV. (In addition, if measured only in
the calorimeter, missing ET was required to ex-
ceed 20 (25) GeV for µ+jets (e+jets) events.)
Though 3-jet events were accepted for top cross
section analysis (if one of the jets was b tagged
by a non-isolated muon), events for top mass
analysis were required to have at least 4 jets, in
addition to an isolated lepton and missing ET .

These basic cuts may seem straightforward, but,
with data sparse and multivariate analysis meth-
ods now widely accepted, one could ask whether,
in retrospect, the selection could have been made
more efficient. Though electrons were identified
by the best means we had – a 5-variable likeli-
hood (or 4-variable when TRD information was
unavailable) – the lack of E/p and preshower
discrimination caused fake electrons to present
a much larger background than is expected for
Run 2. Electron fakes had to be modeled by us-
ing data (which were sparse) and by assuming
that different stages of electron rejection fac-
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torize completely. To proceed with confidence,
one needed to bring the fakes down to a minor
(∼25%) fraction of the more calculable W+jets
background. This goal motivated the electron
ET and η cut and the missing ET cut (and, by
symmetry, the muon ET cut). If we had avail-
able an “electron signal-to-noise” in which we
had full confidence, it would have been more
efficient to cut on that instead.

The jet η cut was made both to suppress elec-
tron fake events (which are more forward) and
to avoid confusion from initial-state radiation.
But the jet ET cut was made for a fundamen-
tally different reason. At the earliest stage of
reconstruction, jets were not found unless they
possessed at least 8 GeV of uncorrected ET . Af-
ter corrections, the 50%-efficient point rose to
11-12 GeV; even after a cut at 15 GeV was
made, there remained concern about modeling
the efficiency turn-on. The 8 GeV reconstruc-
tion threshold had been invoked to suppress
calorimeter noise, but, unfortunately, it was left
at the same value for 0.7, 0.5, and 0.3 cones; had
cone size been taken into account, the 8 GeV
threshold should have been reducible to ∼6 GeV
for the 0.5 cone jets used in top mass analysis.
(Note that, for the purpose of cuts, in DØ Run 1
top analysis all jets and leptons were considered
to have zero invariant mass, so that ET and pT

were interchangeable.)

Two additional cuts completed the “precut” def-
inition; both came late in the game and neither
was straightforward. First was the requirement
EW

T > 60 GeV, where EW
T is the scalar sum of

the isolated lepton and neutrino transverse mo-
menta. This cut further reduced contamination
by electron fakes, which tended to have small
electron ET as well as small missing ET .

The final unstraightforward “precut” was based
on the observation, for lepton + 3-jet events
arising primarily from W+jet background, that
the η distribution of the W was much flatter for
data than for W + 3-jet vecbos (see Fig. 8(a)).
We cut out the region |ηW | > 2 to improve the
agreement, which still wasn’t completely accept-
able; we speculated that the LO vecbos was not
fully capable of modeling W production in the

forward region, where diagrams involving glu-
ons could be important. (When reconstructing
the W from the isolated lepton and missing ET ,
we used the solution with smaller laboratory W
energy; if mismeasurement caused the isolated
lepton + missing ET transverse mass MT

W to ex-
ceed MW , we identified the W direction with
that of the isolated lepton.)

Why is it important to separate top from
background without biasing top mass?

At an early stage it was shown (within DØ by
D. Chakraborty and others) that a cut on HT ,
the scalar sum of the |pT |’s of all jets passing
standard cuts as described above, is effective in
separating top from the dominant W+jets back-
ground. Unfortunately, HT is strongly correlated
with the fit top mass of the event. (This is true
regardless of the details of the top mass fitter;
analysis described here relied on a “fast” fitter
mtl4j, which was not used to produce the fit top
mass results that DØ published.) This strong
correlation has an undesirable practical effect.
After a hard cut is placed on HT , e.g. HT > 180
GeV as in the topological top cross section anal-
ysis, the plot of mean fit top mass vs. generated
top mass flattens considerably, with a slope of
order 0.5 rather than 1. To obtain a correct un-
certainty in true top mass, one must divide the
uncertainty in fit top mass by this slope; a sig-
nificant loss of sensitivity results. Evidently, to
separate top signal from W+jets background, it
is preferable to rely on kinematic variables that
are not strongly correlated with fit top mass.

In DØ’s first publication [3] in which top was
observed, the effect of an HT cut on the fit top
mass was so severe that it was decided instead
to base the reported mass analysis on a loose-
cut sample that unfortunately was dominated by
background. This early strategy needed to be
improved for further, more quantitative work.

How were unbiased separation variables
identified?

Using available geanted and recoed samples
of herwig 5.7 180 GeV top, W + 4-jet vec-
bos interfaced to herwig, and a data-derived
sample of fake electrons or muons + 4 jets, we
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searched for variables that
• discriminated between top and background
that had been reconstructed with high top mass
(mMTL4J > 145 GeV);
• exhibited a (standard, i.e. Pearson product
moment linear) correlation coefficient R with
mMTL4J that was of order 0.1 or less.

For an initial coarse assessment of the discrim-
inating power of a variable v, we performed an
arbitrary crude transformation f(v) such that
the distribution of f lay within a finite range
and exhibited a single maximum. Then, record-
ing its mean 〈fs,b〉 and rms σs,b for signal s and
background b, we formed a figure of merit

F ≡ | 12 〈fs〉 − 1
2 〈fb〉|√

1
2σ

2
s +

1
2σ

2
b

. (II.1)

The background samples were cut to satisfy
mMTL4J > 145 GeV as explained above; the sig-
nal events were not tagged by a non-isolated
muon.

At this initial stage, scores of variables were
considered, many of which were merely small
variations upon one another. For example, the
variable HT2, defined as HT less the |pT | of the
leading jet, had about the same F as HT , but ex-
hibited a slightly reduced (but still unacceptably
high) correlationR withmMTL4J. We speculated
that, for a given degree of mMTL4J correlation,
the leading jet has less discrimination power than
do subleading jets because it is not uncommon
for a produced W to recoil against a single jet
(though with typical ET only of order αS MW ).

What variables were studied most seri-
ously?

The variables considered most seriously were:

v1 ≡ raw missing ET

v2 ≡ A ≡ 3
2 × least eigenvalue of P

v3 ≡ H ′
T2 ≡

HT2

H‖

v4 ≡ K ′
Tmin ≡ (min of 6 ∆Rjj) · Elesser j

T

EW
T

v5 ≡ ηrms ≡
√

〈pT weighted η2〉 .
(II.2)

In the above, “raw” means that the missing ET

was uncorrected for [possible rare] rescaling of
an isolated muon momentum in order to reduce
the µ-ν transverse mass to the W pole mass (see
below). A is the aplanarity, and P is the normal-
ized laboratory momentum tensor derived from
the momenta of the jets and that of the W .
H‖ is the scalar |pz| of the jets, isolated lepton,
and neutrino. ∆Rjj is the distance in η-φ space
between a pair of jets; of the 6 possible ∆Rjj

belonging to the 4 leading jets, the smallest is
chosen. Its factor Elesser j

T is the smaller of the
ET ’s (with respect to the beam axis) of the two
jets comprising this pair. For v5, the average
extends over the jets and also the W .

One needs to solve for the W momentum in or-
der to calculate v2, v3, v4, and v5. Normally, the
W was reconstructed from the isolated lepton
momentum and the missing ET ; two solutions
were found, and the one with smaller laboratory
W energy was retained. Occasionally, no solu-
tions were found because the lepton+neutrino
transverse mass MW

T exceeded the W pole mass
MW . In this case, provided that the isolated
lepton was not a muon with pT > 85 GeV, the
neutrino rapidity was set equal to that of the iso-
lated lepton and MW

T was allowed to continue to
exceedMW . This choice took account of the fact
that the W lineshape does have a Breit-Wigner
tail. On the other hand, if the isolated lepton
was a muon with pT > 85 GeV, it did not lie far
from its maximum detectable momentum (where
σ(1/p) = 1/p), so the large MT

W was likely due
to gross mismeasurement of the muon momen-
tum. In that case we reduced pµ, keeping its
direction fixed, and concomitantly recalculating
the missing ET , until MT

W =MW .

To do something more rational in Run 2, one
realizes in hindsight that DØ needs wfitter,
written in the spirit of zfitter used in Run 1.
wfitter would accept as input the isolated lep-
ton momentum and missing ET and their errors
(preferably expressed in terms of 1/p for muons).
Taking into account the known W lineshape in
addition to these errors, wfitter would return
the most likely W four-momentum, its errors,
and, if MT

W > MW , a measure of the probability
3



that in fact the input information is consistent
with W decay.

Do these variables separate top from back-
ground?

We discuss the ability of these variables to sepa-
rate top from background, taking the least com-
plex variables first. In all figures, “top” refers
to herwig 5.7 with a top mass of 180 GeV;
“bkgnd” or “W+jets” refer to a combination
of a major background consisting of W + 4-jet
vecbos showered by herwig, and a minor back-
ground consisting of data-derived 5-jet events in
which one jet is electron-like. The ratio of mi-
nor to (major+minor) backgrounds was fixed at
0.18. After this cut, all background events that
are plotted were required to have mMTL4J > 145
GeV; taking into account the mtl4j calibration,
this corresponds to a ∼150 GeV cut. In all his-
tograms, top and background are normalized to
the same area; horizontal axes are labeled by bin
center, with labels centered on the appropriate
bin; and underflows and overflows are included
in the extreme bins.

Event aplanarity variable

Figure 1 exhibits the top and background distri-
butions in a function of A ≡ v2, the aplanarity.

0

130

0.03 0.23 0.43 0.63 0.83
f(aplanarity)

top
bkgnd

  

0.18QCD bkgnd frac =

FIG. 1. Top and background distributions in
f(A), where A ≡ v2 is the aplanarity and the
functional form plotted is f(A) = exp (−11A).
(Horizontal bin-center labels are rounded to two
significant figures, e.g. 0.03 should be read as
0.025.)

Note that the objects contributing to the mo-
mentum tensor used to calculate A include the
W as well as the jets, and that A is computed
in the lab, not in the C.M. While it made good
sense (and it slightly improved the discrimina-
tion) to include the W in this measure of event
shape, it made less sense to use the lab frame for
a shape variable that historically was invented
for use in the C.M. Once the W was recon-
structed, it would have been easy to boost the
event along the z axis so that the net z momen-
tum vanishes. If it had been calculated in this
boosted frame, A would have been unaffected
by irrelevant fluctuations arising from random
longitudinal boosts of the quark-antiquark sys-
tem. [A counterargument claimed that tt̄ events,
because of their larger

√
ŝ, are produced with

smaller longitudinal boost than are background
events, givingAmore discrimination power when
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it is computed in the lab. But this argument
didn’t take into account the availability of spe-
cific measures of event centrality, such as H ′

T2

and ηrms discussed below, that are particularly
effective in rejecting highly boosted events.]

Jet centrality/transverse energy variable

Figure 2 exhibits the top and background dis-
tributions in a function of H ′

T2 ≡ v3, where
H ′

T2 ≡ HT2/H‖, HT2 ≡ HT − |pleading jetT |, and

HT ≡
∑
jets

|pT |

H‖ ≡
∑

jets,
,ν

|pz| .
(II.3)

0

150

-1.65 -1.25 -0.85 -0.45 -0.05
ln(Ht2/Hp)

top
bkgnd

0.18QCD bkgnd frac =

FIG. 2. Top and background distributions in
ln (H ′

T2) ≡ ln v3 (see text).

We have already discussed why we prefer HT2 to
HT as a jet ET variable for defining a top mass
analysis sample. But why do we choose to di-
vide HT2 by H‖? The issue here is correlation
with mMTL4J. Aplanarity, an event shape vari-
able, is largely uncorrelated with mMTL4J, while

HT2, a jet transverse energy variable, is strongly
(∼ 1

2 ) so correlated. This is expected: higher-
ET jets yield higher top masses. If we require
an HT -like variable that is largely uncorrelated
with mMTL4J, we must modify HT2. Here we
choose to divide it by a second variable, H‖,
that also scales with object energies and thus
is also strongly correlated with mMTL4J. For-
tunately, H‖ typically is larger for high-mMTL4J

background than for signal, so its effect in the
denominator enhances rather than degrades the
discriminating power of the quotient. This point
is illustrated by plotting in Fig. 3 the top and
background distributions for HT2 itself.

0

180

0.55 0.95 1.35 1.75 2.15
Ht2/100 (GeV)

top
W+jets

 

0.18QCD bkgnd frac =

FIG. 3. Top and background distributions in
HT2 (GeV)/100.

Qualitatively comparing Figs. 2 and 3, it does
not appear that HT2 has a discriminating power
(against background with mMTL4J > 145 GeV)
that is superior to that of H ′

T2. With this def-
inition, H ′

T2 primarily measures jet centrality
rather than transverse energy.

If dividing a variable similar to HT by H‖
is a good idea, why wasn’t this done in the
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cross section analysis? One reason is that
the background-discrimination problems for the
mass and cross section analyses aren’t strictly
comparable; for mass analysis one strives to re-
ject background that is reconstructed with high
apparent top mass, while for cross section anal-
ysis one is most interested in rejecting all back-
ground. It should be noted that the cross section
analysis didn’t make use of a variable designed
explicitly to select central events, although it did
make cuts on the maximum |η| of objects.
Event centrality variable

Figure 4 exhibits the top and background distri-
butions in ηrms ≡ v5, where

ηrms ≡
√∑

W+4jets |pT |η2∑
W+4jets |pT | , (II.4)

and the sum is taken over the four leading jets
plus the W .

0

150

0.33 0.57 0.81 1.05 1.29
eta(rms)

top
bkgnd

  

0.18QCD bkgnd frac =

FIG. 4. Top and background distributions in
ηrms ≡ v5 (see text).

After experimentation, it was found to be slightly
better to include the W in the sum; to exclude

extra jets beyond the four leading ones; to com-
pute the root-mean-square rather than the mean
of |η|; and to weight η2 by |pT | to the first rather
than to another power. Like A and H ′

T2, ηrms is
only weakly correlated with mMTL4J.

Jet separation variable

Figure 5 exhibits the top and background dis-
tributions in a function of K ′

Tmin ≡ v4, where
K ′

Tmin = KTmin/E
W
T , and EW

T , the sum of the
|pT |’s of the isolated lepton and the neutrino,
is the same variable that was required to ex-
ceed 60 GeV in the precut sample definition.
K ′

Tmin is equal to the smallest of the ∆Rjj ’s
that can be formed from the 6 pairs jj of the 4
leading jets, multiplied by Elesser j

T , the smaller
of the jet ET ’s of the 2 jets belonging to this
smallest-∆Rjj pair.

0

200

.13 .38 .63 .88 1.13
sqrt(Ktmin/EWt)

top
W+jets

 

0.18QCD bkgnd frac =

FIG. 5. Top and background distributions in√
K ′

Tmin ≡ √
v4 (see text).

KTmin probes the origins of the four leading jets
in the final state. For top events these jets arise
from decay of heavy objects and are usually dis-
tinct, with ∆Rjj not small. On the other hand,
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for W+jets and QCD background, the extra jets
arise from radiation, which can cause pairs of jets
to cluster. Multiplying ∆Rjj by Elesser j

T allows
KTmin to approximate a momentum transverse
to the radiation axis, which is a key variable
controlling the radiation probability.

After experimentation, it was found to be sim-
pler, and as effective, to consider only the two
jets closest in ∆R, and to raise ∆Rjj and E

lesser j
T

to the same power.

In analogy to the evolution of H ′
T2 from HT2, the

description of KTmin would end here, except for
its significant (∼ 1

4 ) correlation with mMTL4J,
not unexpected in view of the transverse en-
ergy factor that it includes. Again we sought to
mitigate this correlation. If again one were to
divide by H‖, one would introduce too much mu-
tual correlation with H ′

T2. Instead we divided
KTmin by EW

T , which is similarly correlated with
mMTL4J; this defined K ′

Tmin.

We were less pleased with K ′
Tmin than we were

with H ′
T2. Our main reservation concerning H ′

T2

was that dividing HT2 by H‖ transformed a mea-
sure of jet transverse energy to a measure of jet
centrality (thereby introducing unwanted corre-
lation with other variables like ηrms that measure
event centrality). Otherwise we were happy with
H ′

T2’s performance and cleanliness of definition.

Unfortunately, K ′
Tmin is not as cleanly con-

structed – we divide a jet-related quantity by
a lepton-related quantity, which seems to make
sense only as a means of reducing the top mass
correlation. Furthermore, doctoring KTmin in
this way slightly reduced its rejection power.
This is seen by comparing Fig. 5 with Fig. 6,
which exhibits the top and background distribu-
tions in a function of the undoctored KTmin.

0
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3.15 4.65 6.15 7.65 9.15
sqrt(Ktmin)

top
W+jets
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FIG. 6. Top and background distributions in√
KTmin (see text).

Notwithstanding these complaints, we lacked a
better idea for reducing the top mass correlation
of KTmin, so we proceeded with use of K ′

Tmin.

In Run 2-inspired hindsight, are there further
thoughts on K ′

Tmin? One modest point is that,
in a small-∆η small-∆φ approximation, the fa-
miliar variable prelT , representing the momentum
of either (massless) jet 1 or jet 2 perpendicular
to the sum of their momenta �p1+ �p2, is given by

prelT ≈ ∆R12
pT1pT2

pT1 + pT2
. (II.5)

Setting KTmin ≡ prelT as defined by this partic-
ular equation may not have been tried in Run
1 analysis; it might be a slightly better choice
than simply multiplying ∆R12 by the smaller of
pT1 and pT2. If so, one should check whether
the jet pair would better be chosen on the basis
of minimum prelT rather than minimum ∆R.

Missing energy variable

Figure 7 exhibits the top and background distri-
butions in a function of missing ET ≡ v1. This
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variable is computed using the calorimeter and
the muon system (not the calorimeter alone).
As mentioned earlier, here we call it “raw” be-
cause it is uncorrected for the (rare, previously
described) rescaling of pµ and pν

T that was car-
ried out when MW

T > MW and pµ
T > 85 GeV.

The function f(v1) for which these distributions
are plotted is given in the caption; it is different
for e+jets and µ+jets events because both the
v1 threshold and the v1 resolution are different
for these two classes.

0

150

0.03 0.23 0.43 0.63 0.83
f(missing Et)

top
bkgnd

0.18QCD bkgnd frac =

FIG. 7. Top and background distributions in
f(v1), where v1 ≡ missing ET (in GeV), and, for
�+jets events,

f(v1) ≡ exp
(−max

(
0, ((

√
v1 − c1)/c2)

))
c1 =

√
25, c2 = 1.5 (� = e)

c1 =
√
20, c2 = 3.0 (� = µ) .

(II.6)

Figure 7 is qualitatively different from the first
6 figures, showing much less discrimination be-
tween top signal and background. Why did we
consider v1 at all?

To explain, we refer to some history. At an

earlier stage of analysis progress, when fake non-
isolated-lepton “QCD” background was a larger
issue, we sought to distinguish among all 3 of
the event classes – top, W+jets, and QCD.
To each event, we aimed to assign probabilities
Ptop, PW+jets, and PQCD, with their sum equal
to unity. The 3 probabilities for each event could
displayed as a point on the surface of an equilat-
eral triangle, with each vertex representing unit
probability for a particular class. Events ac-
cepted for top mass analysis were to be classified
by drawing an optimized contour on the triangle
that included its top vertex.

Correspondingly, we sought to develop variables
that were effective in distinguishing each class
from the others; in particular, QCD events ex-
hibited low missing ET relative to W+jets and
top events, which include genuine neutrinos. It
was in this context that the variable v1 was
defined and used.

At a later stage of top analysis, after the QCD
background was further suppressed by better
isolated lepton identification, we reexamined the
effectiveness of this “triangle” scheme in com-
petition with a simpler scheme in which both
backgrounds were lumped together. Using top
efficiency vs. purity as a criterion, we found the
two methods to be essentially the same. From
that point onward, we focused on separating top
from a single background sample consisting of
82% W+jets and 18% QCD. In that context,
as emphasized by Fig. 7, v1 provided only very
limited discrimination.

As will be described in Section IV, we developed
a top likelihood using a quantitative method for
determining whether and with what optimum
weight each potential variable should be used.
Despite the very modest discrimination power of
v1, this method determined that it is better to
include v1 in the likelihood than to leave it out.
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Was DØ able to model these variables?

In the lepton+jets top mass PRL [4], we addressed this question using W+3 jet control samples as
illustrated in Fig. 8 (c–f). The PRL text stated “As shown for the background dominated W+3 jet
sample in Fig. 8 (c–f), x1–x4 [v1–v4 in the notation of the present note] are reasonably well modeled
by MC; this is true also for the W+2 jet and top mass samples (not shown).”
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FIG. 8. (This reproduces the PRL caption). “Events per bin vs. event selection variables defined in
the text, plotted for (a–b, g–h) top quark mass analysis samples, and (c–f) W+3 jet control samples.
Histograms are data, filled circles are expected top + background mixture, and open triangles are
expected background only. Solid arrows in (a–b) show cuts applied to all events; the open arrow
in (g) illustrates the LB cut. The nonuniform bin widths in (g–h) are chosen to yield uniform bin
populations.”
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The basic idea in Fig. 8(c–f) was to use W +
3-jet events, untagged by nonisolated muons and
largely background, as a test of DØ’s ability to
model variables v1–v4 in its background sam-
ple. As is seen from the plots, the agreement
wasn’t perfect, but statistics were limited. After
the paper was submitted, lively correspondence
occurred between DØ and one of the referees.
The following is a fragment from that correspon-
dence:

“Referee B continues, 4. At the bottom of page 7,
the x i’s are introduced. The last two of these, x 3
and x 4, have potential sensitivity to the modeling
of gluon radiation in the Monte Carlo. Are there
tests in the data that confirm the Monte Carlo
and give a measure of the systematic uncertainty?

Reply: In the background dominated W + 3
jet sample shown in Figs. 1(e) and (f), Monte
Carlo matches data with chisq y probabilities of
14% and 2%, respectively. The same distribu-
tions are in general agreement for the W + 2 jet
sample, and in detailed agreement for the W +
4 jet sample upon which this analysis is based.
The systematic error includes +-100% of the ef-
fect of changing the VECBOS QCD scale from
jet 〈p T〉ˆ2 to M Wˆ2, and +-100% of the effect
of substituting the ISAJET Monte Carlo gener-
ator for HERWIG in fragmenting the VECBOS
partons.

Detail: Figures 1(e) and (f) present one set of
tests that quantify the reliability of the VEC-
BOS MC simulation of x 3 and x 4. Here the
sample is W + 3 jets, which are dominated by
background and which have much higher statis-
tics than the W + 4 jet data upon which the
top mass measurement is based. For this sam-
ple and these tests, the chisq y probabilities are
14% and 2%, respectively

As mentioned on Page 7 of the manuscript, the
same set of tests was repeated for the W + 2
jet and W + 4 jet final states. For the W + 2
jet tests, the data and simulation are in general
agreement; for the distributions that are analo-
gous to Figs. 1 (e) and (f), the ratio of means
for simulation and data are 0.94 and 0.92, re-
spectively, with an error of about 2.5%. For the
W + 4 jet final states, which are the direct basis

for this analysis, the data and Monte Carlo are
in excellent agreement.

As stated above and on Page 10, we included in
the systematic error estimate +-100% of the ef-
fect of changing the VECBOS QCD scale from
jet 〈p T〉ˆ2 to M Wˆ2, and +-100% of the effect
of substituting the ISAJET Monte Carlo gener-
ator for HERWIG in fragmenting the VECBOS
partons. These are substantial excursions of the
background model, based on variations that we
observe in the level of agreement between W +
jets data and the simulated background for many
different distributions. Allowance for these sys-
tematic errors in the cross-checks performed with
the W + 3 jets events would further enhance the
degree to which the agreement between data
and simulation in those tests is considered to be
satisfactory.

Referee B continues,This raises the general ques-
tion of determining the systematic uncertainty in
the multivariate analysis. For example, the data
and Monte Carlo distributions of the missing ET
(fig. 1c) are qualitatively similar, but quantita-
tively they are not the same (large chi**2 without
the first point, very large with it). How does this
propagate into a systematic uncertainty?

Reply: If there were a problem in modeling the
background to which the calculation of D is es-
pecially sensitive, this would be manifested most
strongly as an inconsistency between data and
simulation in the distribution of D itself. Figs.
1(g) and (h) confirm that the distribution of
D LB and D NN in the data is consistent with
the simulation; the chisq y probabilities are 96%
and 64%, respectively.

Detail: For Fig. 1c, the variable chisq y (de-
fined above) is 26.1 (33.7) for 18 (19) degrees of
freedom, if the first populated bin is not (is) in-
cluded, yielding a chi-square probability of 10%
(2%). The W + 3 jet control samples used to
construct this cross-check play no direct role in
the top mass analysis.

For the analogous plot using the W + 2 jet
top samples, general agreement is obtained; the
means of the simulated and data distributions
are mutually consistent, and the RMS’s are the
same within 6% (1.2 standard deviations). For
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the analogous plot using the W + 4 jet top mass
samples, which do play a direct role in the top
mass analysis, the agreement is superb... ”

Note that “chisq y” is defined by

“Here N is the no. of data counts and y is
the simulation (normalized to the data). Then
chisq y is sum (N i-y i)ˆ2/(y i+dy iˆ2) (dy i is
the error on y i) .”

To summarize this correspondence, in Run 1 DØ
argued that the distributions of v1–v4 were ade-
quately modeled; ultimately, PRL accepted that
argument. At that time, would DØ have been
able to argue that the correlations among these
variables were adequately modeled? In the au-
thor’s opinion, more QCD statistics, extension
of vecbos to NLO (so that e.g. ηW is better
predicted), and serious tuning of Monte Carlo to
detector performance would have been required
in order to do a convincing job of that.

III. NEURAL NETWORK DISCRIMI-
NANT

As mentioned in the Introduction, in two differ-
ent analyses DØ used two different discriminants
to separate top from background: a likelihood
discriminant DLB and a neural network (NN)
discriminant DNN. DNN was computed primar-
ily by P. Bhat and H. Prosper; while the details
of their work lie beyond the scope of the present
discussion, DNN retains a strong connection to
the present note, since variables v1-v4 were the
NN inputs.

Here we mention the following points concerning
DNN:

• The classic difference between likelihood- and
NN-based discriminants is that the latter are
sensitive to (and can gain discrimination from)
differences between signal and background in
the correlations among input variables. As men-
tioned above, in Run 1 DØ argued that it was
able to model the background and signal distri-
butions in v1-v4. At that time, DØ didn’t argue
correspondingly that it was able to model the
correlations among those variables.

• A “kitchen-sink” NN approach to selecting a
lepton+jets sample for top mass analysis would

use as NN input a collection of familiar vari-
ables, such as HT and H‖; individual jet, lepton,
and neutrino pT ’s; shape variables like apla-
narity and centrality; and a measure of the
number of jets. At an early stage, variations
on this approach were attempted; unfortunately,
they yielded discriminants that weren’t useful
for top mass analysis. The accepted events
were skewed strongly toward high apparent top
mass. The accepted background sample’s recon-
structed top masses rose to values near that of
the signal; samples with disparate generated top
masses exhibited reconstructed top masses that
were more tightly bunched. These effects com-
promised both statistical and systematic errors.
Only after sets of nearly top-mass-uncorrelated
variables such as v1-v4 were used as input did
the NN-selected samples become useful.

• Taking an idealized view of Run 2, assum-
ing that there will be no strong limitations on
Monte Carlo accuracy or background statistics,
one would expect from the “kitchen-sink” ap-
proach greater statistical power in separating
top from background than could be obtained
with the limited set of variables described in
this note. For example, consider our variable
v3 = HT2/H‖. Clearly more information is con-
tained in the separate values of HT2 and H‖ than
in their quotient alone. Can DØ identify a strat-
egy that would unlock any additional discrimina-
tion without biasing the apparent top mass of the
selected sample? Two approaches come to mind:

◦ Identify or invent a type of NN that can
be trained to produce an output D which dis-
criminates maximally between two sample types,
subject to the constraint that D is uncorrelated
with a particular additional variable.

◦ Train an NN on top background and signal
samples, reweighting the background to match
exactly the apparent top mass distribution of the
signal. (This would require an NN that is ca-
pable of being trained on weighted events.) We
speculate that, if trained in this way, the NN
would yield an output that is uncorrelated with
the apparent top mass.
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IV. LIKELIHOOD DISCRIMINANT
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FIG. 9. Natural logarithm of ratio of top to background for the distributions plotted in Fig. 1 (f(v2),
top left), Fig. 2 (ln v3, top right), Fig. 4 (v5, bottom left), and Fig. 5 (

√
v4, bottom right).
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Fitting the top/background ratios

With variables {vi} defined, the first step in
forming the likelihood discriminant DLB was to
plot bin-by-bin the ratio

Ltb
i ≡ ln (top/background)

for the distributions in x ≡ f(vi) shown in
Figs. 1, 2, 4, 5, and 7, and to fit the result to
a quadratic or cubic y(x). Figures 9 and 10
exhibit these ratios and fits.

y = 7.9676x3 - 12.796x2 + 4.3875x - 0.1096
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FIG. 10. Natural logarithm of ratio of top to
background for the distributions plotted in Fig. 7
(f(v1)).

Though the quadratic and cubic fit results dis-
played in Figs. 9 and 10 seem straightforward
enough, pitfalls were avoided by respecting the
following points:

• When fitting the ratio of two distributions, the
distributions should be divided first and fit after-
ward, rather than the reverse. Otherwise small
variations in the initial fits near the distributions’
tails can cause large variations in the ratios.

• The logarithm of the ratio should be fit, not
the ratio itself. This simplifies the fit function
and symmetrizes the errors on the points.

• To prevent “error of the error” biases, bins
should be adequately populated. (In the ratio
involving

√
v4, two interior bins were combined.)

• To avoid bias, no under/overflow points should
be ignored. Instead, data near the tail of a
distribution should be consolidated in a single
bin with adequate statistics and plotted at an
appropriate abscissa.

• The indicated quadratic or cubic fits should
be used only within the range of the points that
were fit. Those ranges were

0 ≤ f(v1) ≤ 1
0 ≤ f(v2) ≤ 1

−1.5 ≤ ln v3 ≤ −0.1
0.35 ≤ √

v4 ≤ 1
0.36 ≤ v5 ≤ 1.50 .

(IV.1)

If the abscissa lies beyond that range, the
quadratic or cubic should be evaluated at the
range limit.

Correlations between top mass and dis-
criminant variables

Up to now, this note has remained vague about
the central feature of variables v1-v5 - that they
are only weakly correlated with mMTL4J. This
is deliberate: up to now Ltb

i had not been intro-
duced, while the relevant correlation is the one
between mMTL4J and Ltb

i , not between mMTL4J

and vi itself. This is because Ltb
i rather than vi

measures the discrimination between top signal
and background, and it is this discrimination we
wish to be uncorrelated with mMTL4J. As usual,
the correlation CmLi between m ≡ mMTL4J and
Li ≡ Ltb

i is expressed by the usual Pearson prod-
uct moment linear correlation coefficient

CmLi ≡
〈(m− m̄)(Li − L̄i)〉

σmσLi

, (IV.2)

where e.g. σLi is the root variance of Li.

Measured on W+jets-only background (with
mMTL4J > 145 GeV, as usual), the values of
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CmLtb
i
≡ Cmi were

0.019 = Cm1 (missing ET )
−0.082 = Cm2 (A)
0.017 = Cm3 (H ′

T2)
0.055 = Cm4 (K ′

Tmin)
0.040 = Cm5 (yrms)

0.432 = Cm6 (HT2)
0.239 = Cm7 (KTmin) .

(IV.3)

At the bottom are included the correlations with
mMTL4J of two variables that were not used in
the discriminant because these correlations were
too large.

Correlations among discriminant variables

Tabulated are the correlations Cij measured be-
tween pairs of discriminant variables Ltb

i and Ltb
j :

Cij =




2 3 4 5

1 −0.011 0.020 −0.093 0.056
2 0.399 0.247 0.270
3 0.132 0.771
4 −0.140




(IV.4)
The indicated values are the means of the corre-
lations measured on top signal and on W+jets-
only background, which were similar. (Obviously
the full correlation matrix C is symmetric with
unit diagonal elements.)

Some of the correlations among these variables
are substantial, particularly between H ′

T2 and
yrms (0.771) or A (0.399). These correlations
must be taken into account when constructing
an optimized discriminant from the set of Ltb

i ’s.

Log likelihood significance and normaliza-
tion

Two last components are needed to form the like-
lihood discriminant DLB The first is the signal-
to-noise (“S/N”) si, defined for each variable i
in gaussian approximation by

si ≡
1
2 〈Ltb

i 〉top − 1
2 〈Ltb

i 〉bkgnd√
1
2σ

2(Ltb
i )top +

1
2σ

2(Ltb
i )bkgnd

, (IV.5)

where σ2 is the variance. Thus si is the num-
ber of standard deviations by which 〈Ltb

i 〉 for
an “average” event (top or W+jets-only back-
ground) is nonzero. It measures the significance
of the log likelihood that is associated with each
variable. The values of the elements of the S/N
vector �s were

0.110 = s1 (missing ET )
0.421 = s2 (A)
0.492 = s3 (H ′

T2)
0.369 = s4 (K ′

Tmin)
0.366 = s5 (yrms)

0.465 = s6 (HT2)
0.400 = s7 (KTmin) .

(IV.6)

These values quantify the assertions, made pre-
viously in this document, that H ′

T2 is more
efficient than HT2, but K ′

Tmin is less efficient
than KTmin; and also that missing ET is much
less efficient (for separation of top from W+jets)
than the other variables. Note also that H ′

T2 is
more efficient than yrms, with which it is highly
correlated.

The second component, needed for normaliza-
tion purposes, is merely the numerator of �s:

�i ≡ 1
2 〈Ltb

i 〉top − 1
2 〈Ltb

i 〉bkgnd . (IV.7)

For top andW+jets-only background, the values
of the elements of the the average log-likelihood
vector �� were

0.035 = �1 (missing ET )
0.329 = �2 (A)
0.504 = �3 (H ′

T2)
0.225 = �4 (K ′

Tmin)
0.288 = �5 (yrms)

0.449 = �6 (HT2)
0.296 = �7 (KTmin) .

(IV.8)

Total S/N for uncorrelated variables
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Consider, for example, variables v1-v4. Hypo-
thetically, if the {Ltb

i , i = 1, 4} were all mutually
uncorrelated, for a given event the combined log
likelihood of top vs. background would be given
by their sum:

Ltb =
4∑

i=1

Ltb
i

(
fi(vi)

)
, (IV.9)

where fi is the function that was applied to vi

before the ratio of top to background distribu-
tions was taken, e.g. f2(v2) = exp (−11v2) (see
Fig. 1). (This is a special case of forming the
weighted sum

Ltb =
4∑

i=1

ei L
tb
i

(
fi(vi)

)
, (IV.10)

with all weights ei equal to unity.)

In this hypothetical mutually uncorrelated case,
the S/N stot of the resulting Ltb would be

stot =

√√√√ 4∑
i=1

s2i = 0.753 . (IV.11)

That is, on average, either a top or a back-
ground event would have a discriminant that is
3
4σ different from zero, and 3

2σ different from the
complementary assignment.

Cross-check on gaussian approximation

As soon as one makes use of its correlation ma-
trix C, implicitly one is assuming that Ltb

i has a
gaussian distribution. A cross-check of this as-
sumption may be made. If the Ltb

i are uncorre-
lated log likelihoods, they should be added with
unit weight. On the other hand, if the Ltb

i are
uncorrelated gaussian-distributed variables mea-
suring the same property (top vs. background),
it is easy to show that they should be combined
with relative weights proportional to the quotient
s2i /�i, as defined above. For these two statements
to be consistent, s2i /�i should be the same for all
i. Plugging in the numbers tabulated above, one

obtains (for top and W+jets-only background)

0.344 = s21/�1 (missing ET )

0.540 = s22/�2 (A)
0.481 = s23/�3 (H

′
T2)

0.605 = s24/�4 (K
′
Tmin)

0.466 = s25/�5 (yrms)

0.482 = s26/�6 (HT2)

0.541 = s27/�7 (KTmin) .

(IV.12)

The mutual agreement is coarse; in particular,
missing ET departs by ∼ 30% from the norm.
Note that the function f(v) against which the ra-
tio of top to background distributions is plotted
doesn’t affect this check. Fortunately, missing
ET will be seen to play so small a role that the
departure of Ltb

1 from gaussian behavior should
not pose a serious concern.

In the previous section, when we were doing the
simplest thing, i.e. adding uncorrelated likeli-
hoods, we used unit weights. Going forward,
instead we shall consider the log-likelihoods Ltb

1

instead to be gaussian-distributed variables to be
combined by using their correlations, signals-to-
noise, and average values – given, respectively,
by C, �s, and ��.
Total S/N for correlated variables

In the general case, in which C is non-diagonal
and the weight vector �e is arbitrary, the total
S/N stot is given by [5]

s2tot =
(�e · ��)2∑

i,j ei�iCij�jej/(sisj)
. (IV.13)

If we (erroneously) continue to combine Ltb
1 - L

tb
4

using unit weights, stot becomes

s2tot =
(
∑

k �k)
2∑

i,j �iCij�j/(sisj)
= (0.617)2 , (IV.14)

using the numerical values tabulated above –
substantially degraded from the hypothetical no-
correlation case where an S/N of 0.753 could be
obtained.

15



For this correlated case, the weight vector with
optimum discriminating power is given within a
constant factor by

eoptj =
∑

i (�s
† C−1)i si/�i
�s† C−1 �s

, (IV.15)

where �s† is the transpose of �s. Using these
optimum weights,

s2tot = �s† C−1 �s = (0.619)2 . (IV.16)

The total S/N improved very slightly compared
to using wrong (unit) weights.

Cross-check on S/N optimization

As a cross-check on �eopt from Eq. (IV.15) and
its implementation, one can ask a numerical ex-
tremization package [6] to solve for �enum that
maximizes stot from Eq. (IV.13). This check was
done for a calculation that used all seven Ltb’s.
The results for the optimum weights �eoptanalytic and
�eoptnumerical were

�eoptanalytic =




0.784
0.517
0.118
0.837
0.590
0.466
0.096




; �eoptnumerical =




0.786
0.518
0.155
0.821
0.527
0.448
0.108




.

These weights are somewhat different, particu-
larly for yrms, the 5th element. However, the
combined S/N (stot) for the two optimizations
had the same value 0.654. Evidently the opti-
mum is broad.

For reasons that shortly will become apparent,
most studies employed a numerical rather than
than an analytic optimization.

Correlation of combined likelihood with
top mass

When the combined top-vs.-background likeli-
hood Ltb is a weighted sum of the Ltb

i ’s, using
the weight vector �e as in Eq. (IV.10), its normal-
ized covariance CmL with the reconstructed top
mass mMTL4J is

CmL =
∑

k ekCmk�k/sk√∑
i,j ei�iCij�jej/(sisj)

. (IV.17)

For example, using the analytic and numerical
optimizations of �e for all seven variables that
was described in the previous section, CmL was
equal to 0.189 and 0.185, respectively. This is
too large a top mass correlation to satisfy the
goal of this work.

Combined optimization of S/N and top
mass correlation

Given that a numerical approach to optimizing
the weight vector �e proved feasible, it made sense
to expand this approach by searching numeri-
cally for the weight vector that maximizes the
S/N from Eq. (IV.13), subject to the constraint
that CmL, the correlation of Ltb with mMTL4J

from Eq. (IV.17), vanishes. Operationally this
was done by extremizing (s2tot+H C2mL), whereH
was a constant of order 103. For the same seven-
variable example discussed above, the combined
optimization yielded

�eoptcombined =




0.815
0.629
0.521
1.108
0.346
−0.014
−0.104




.

As required by the constraint, this radically
different weight vector did yield CmL = 0.000,
but the combined S/N was degraded to 0.625
from the unconstrained value of 0.654. In the
new weight vector, variables 6 and 7, HT2 and
KTmin, entered only weakly and with negative
coefficients. Evidently, in the constrained case,
their correlation with mMTL4J was too severe to
allow them to participate effectively in separat-
ing signal from background.

Using fewer variables for optimization

Dropping variables 6 and 7 altogether, with CmL

again constrained to vanish, the combined S/N
edged downward from 0.625 to 0.621. In this con-
strained optimization, variable 5 (yrms) received
less than 1

3 of the weight of any other variable.
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Dropping each of the remaining 5 variables, it
was confirmed that dropping yrms yielded the
smallest degradation: S/N edged further down-
ward from 0.621 to 0.619 (the same value dis-
played in Eq. (IV.16)).

To summarize, with Ltb constrained to be uncor-
related with mMTL4J, the S/N degraded by 1%,
from 0.625 to 0.619, as the number of variables
was reduced from seven to the first four.

The choice to proceed with the four variables v1-
v4 was made not only for the sake of simplicity.
For mutual consistency and a cross-check, we
sought also to use the same set of variables for
the likelihood-based (LB) and neural network-
based (NN) analyses. As seen above, for the LB
analysis, it was possible using constrained nu-
merical optimization to null the correlation of
the overall likelihood Ltb with top mass, even
when individual variables like v6 and v7 were sig-
nificantly so correlated. For the NN analysis, no
such technique was available to DØ at that time.

Finally, the likelihood discriminant DLB was
defined by

DLB =
1

1 + P exp (−Ltb)
, (IV.18)

where P is a background/top prior set equal to
1.25 for Run 1 analysis (based on the expected
mixture of background and top in that sample).
DLB is unity for top, zero for background, and
more generally intended to be proportional to
P (top)/(P (top) + P (background)).

Scaling the weight vector

Handling two classes of background

As mentioned in Section II, the experimental
background consisted of 82% W+jets and 18%
fake isolated leptons (“QCD”); all of the figures
in this note use that mixture. Correspondingly,
all of the log-likelihoods Ltb

i described up to this
point were “trained” on that mixture.

However, all of the numbers tabulated in the text
up to this point, for example Eqs. (IV.4), (IV.6),
(IV.8), (IV.12), etc., as well as quoted values
for stot and �e, result from applying mixture-
trained Ltb

i ’s to samples comprised of top and

of background consisting only of 100% W+jets.
Therefore it remains to describe the incorpora-
tion of QCD events into the scheme. We start
with a short history.

As mentioned in Section II’s discussion of miss-
ing ET , originally this analysis set the more
ambitious goal of distinguishing among all three
event classes. Correspondingly, two sets of Ltb’s
– Ltb

W+jets and L
tb
QCD – were formed using sepa-

rate training samples for each background class.
Next, two sets of �e’s were determined, optimizing
S/N for separation of W+jets from top (using
Ltb

W+jets) and for QCD (using Ltb
QCD. Enforcing
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excel finder, but a more primitive package
such as minuit presumably would suffice.
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